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INTRODUCTION 

The technique of local volume averaging of continuum equations of motion and transport 
has been used by many authors to obtain equations applicable to multiphase systems (e.g. 
Whitaker 1967; Bear 1972; Hassanizadeh & Gray 1979a, b). In performing averaging of this 
sort, it is necessary to make use of theorems which relate averages of derivatives to 
derivatives of average quantities. Slattery (1967) and Whitaker (1967) developed this 
relation for spatial derivatives by analogy with the transport theorem. Bachmat (1972) 
proved the averaging theorems for both spatial and temporal derivatives. Gray & Lee (1977) 
provided a simple proof which makes use of a distribution function which behaves as a 
multidimensional extension to the Dirac delta function concept. Cushman (1982) has also 
presented a very rigorous proof of these theorems making use of distribution theory. In a 
somewhat related work, Gray (1982) has developed averaging theorems which are local in 
only two of the dimensions while being global in the third dimension. 

When averaging point equations, it is necessary to use an averaging volume of a size large 
enough that the averaged quantities obtained are meaningful and suitable for the flow under 
consideration. However this averaging volume should not be so large that macroscopic 
inhomogeneities affect the average values. For example, in analyzing porous media flows, 
one typically assumes that an averaging volume exists of length scale I such that (Whitaker 
1969) 

[1] 

where d is characteristic length of the pore; and L is some macroscopic dimension represen- 
tative of the process under consideration. Currently used averaging theorems require that 
an averaging volume which is independent of time and space be applicable at every point 
in the region under consideration. Within this framework, many problems are adequately 
described by the equations obtained. 

Nevertheless, there are a few types of problems which may be more amenable to analysis 
if the averaging volume may be formulated as a function of time and space. For example, 
in a porous medium composed of a well-sorted soil, the grain size gradient may require that 
the averaging volume not be constant in space. At each point in such a system it is still 
necessary to identify an averaging volume of characteristic length/which satisfies [1] and 
produces meaningful averages. Other problems where the added flexibility of a variable 
averaging volume may be useful include analysis of a swelling soil where the solid phase 
volume is a function of time and space, and infiltration problems where large gradients in 
water fraction may exist. 
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In the present work, currently used averaging theorems are extended to allow for 
averaging volumes which vary in space and time. This derivation, done in the context of the 
ideas presented by Gray & Lee (1977), makes use of a spherical averaging volume with a 
radius which varies continuously in space and time. 

D E F I N I T I O N S  F O R  A V E R A G I N G  

In an earlier work, Gray & Lee (1977) defined a function y, which is a multi-dimensional 
extension of the unit step function and allows for great simplification in developing proofs 
of the averaging theorems for multiphase systems. This function is defined such that it has 
a value of unity in phase ~, but is zero in all other phases. Furthermore, arguments were 
presented which show that 

V~,, = - n~6 (x - x=a) [2] 

where x,o is the location of the ~-fl interface; ~ is a unit normal pointing out of the ~-phase; 
and 6 ( x -  x,a) is a multi-dimensional analogue to the Dirac delta function. It must be 
emphasized that 6 (x - x,a) is not simply the classical point Dirac delta function in multi- 
dimensional space, but is an extension of the concept of a point delta function to a 
distributed version. 

The notation and definitions to be used follow that of Gray & Lee (1977) but will be 
repeated here in brief form. For averaging, we locate the center of the averaging volume by 
the position vector x. At this center a ~ coordinate system is defined such that a point within 
an averaging volume is located by 

r = x + ~. [3] 

The averaging is done over the ~-space and the following averages are defined 

phase average 

= ovl" d6fv ~k(x + ~'/)y~(X + ~, t) t) dv~ [4] 

intrinsic phase average 

(~O,)'(x, t) = ~ v~(X + ~, t)y,(x + ¢, t) dye [5] 

where 6 V is the averaging volume; and 6 V, is the volume of ~t-phase within the averaging 
volume. Note that in the above equations, the effective volume over which the integrations 
are performed is 6 V, because y, = 0 when a point is not in the ~t-phase. 

The phase averages are related to the intrinsic phase averages by 

<q,,> = E,<q,,>, t6] 

where 

6V, 1 f y , ( x + ¢ , t ) d v ¢ "  [7] 
e,= 6V -6V.J~v 

In the subsequent portion of the paper, the nabla operator will be used with the 
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conventions that: Vx refers to derivatives taken with respect to x holding ¢ constant; V¢ 
refers to derivatives taken with respect to ~ holding x constant; V refers to either Vx or 

V¢. 

A V E R A G I N G  T H E O R E M S  F O R  N O N - C O N S T A N T  A V E R A G I N G  V O L U M E  

In this section we will derive theorems which relate the average of a derivative to the 
derivative of an average for multi-phase systems when the averaging volume may vary in 
space and time. To develop these theorems, we will make use of two different indicator 
functions. The first is ~,(x + ~, t) which has a value of unity in the ~-phase and is zero 
in all other phases. The second generalized function is x(x, ~, t) which has a value of 1 
in 6 V located at x and is zero outside this averaging volume. Thus if b(x, ~, t) is the position 
vector of the surface of the averaging volume located at x, 

x(x, ~, t) = 1 -- M[(~ - b)" n] [8a] 

where n is the outward unit vector at the boundary 6 V 

M = f 0  if ( ~ - b ) . n < 0  
[8b] 

if ( ~ - b ) . n > O  

and the geometry of 6 V has been assumed to be such that a line drawn from ~ = 0 radially 
outward in any direction will intersect the boundary of the averaging volume at only one 
point. Note that if the averaging volumes are spheres, b will not depend on ~. Also if V 
is constant in space or time, b will not depend on x or t respectively. We will assume here 
that the variation of 6 V in space and time is continuous such that the first derivatives of  
b are finite. 

Because the product xy, has the value of 1 in 6 V, within 6 V but is zero everywhere 
else in space, 

6V(Vd/,) = f~v (V~b )y'dV = fv~ (Vd/ )Y'x dv [9] 

where g~(x + ~, t) is a property of interest; and V~o is a volume which encompasses the 
entire x domain and does not depend on space or time. The rightmost term in [9] may 
be rearranged using the chain rule to the form 

fv®(V¢)?,x dv= fv V(~b~,x)dv- ;v ¢(V~)x dV - fv qJY~(Vx)dv" [10] 

In the first term on the right, because V~ does not depend on x, we can change V to V~, 
interchange the order of differentiation and integration, and rearrange to obtain 

[11] 

The second term on the right side of [10] reduces to an integral over the interface between 
the ct- and fl-phases (Gray & Lee 1977) such that 

;v® d/ (V~,)r dv = ~rv d/ (V~,) d V = - ;rA, d/ n da" [12] 
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The final term in [10] simplifies most easily when the REV is spherical. In this case b does 
not depend on ~ and 

Vxt¢ = 6(~ - b )Vxb [13] 

where 6(~ - b) is the multidimensional analogue to the Dirac function. Thus the last term 
in [10] becomes an area integral over the bounding surface of the REV, denoted 6A, and 

fv~ ~Oy~(VxK)dv=foA g,?~V~b da = V~b f~A ¢?~da [14] 

where V~b is removed from the integral because b depends only on x. Substitution of [11], 
[12] and [14] into [10] and then reference back to [9] yields 

A~ A 
[15] 

where 6 V = (4/3)~b 3. 
This equation can be rearranged to obtain the averaging theorem in the form 

~V 1 f~A~nda V~(6V) 1 6 V  6A I~ (V~,~) = Vx[6 V(~,~)] + ~-# ~0 da [16] 

A~ 

where 6A~ is the portion of 3A which is the o~-phase. 
When 6 V is constant, this identity reduces to the classical averaging theorem. Defining 

~(x, ~, t) = $(x  + ~, t) - (¢~)~(x, t) [17] 

we can rearrange [16] to an alternate form 

i ~nda vx(av) 1 f, (da. [18] 
(v , , )"  = v x ( , , ?  + W ,  A,~ ~v ~ A, 

The development of averaging theorems for time derivatives is also straightforward in 
the context of  the indicator function. First 

6V v ~  Y~dv ~ --~-f y~r dv. [19] 

Application of the chain rule to the third term in [19] yields 

6V = o0 ~ (~'y,~) dv - ¢y, ~-~ dv -- ¢ ~ r dv. [20] 
oc 

But (Or/Ot) = w" n6(~ - b) and (O),,/cgt) = w. n6(x - x "a) where w is the velocity of the 
boundaries 6A and 6A,~. Thus 

( ~ t ~ )  1 0 [(O~)6V]___I_I [ ~ O w . n d a _ ~ v f ~  Ow.nda"  [21] 
= ~ ~ 6 v J,,,, , , , ,  
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Note that if 6V does not vary with time such that (~b/dt) -- w. n = 0 on 6A, theorem [21] 
reduces to the standard form of the time averaging theorem. Making use of  ff as defined 
in [20] we can rearrange [21] to the alternative form 

(O~ f6 " 6V~ 1 f, qTw.nda.A,,B [22] /t)~b~\" = a )~ 1 d T w . n d a - -  
\ a t /  6V, A, 

It may prove useful in application of theorem [21] and [22] to balance equations that 
for the case of spherical averaging volumes considered here, w . n  on 6A is independent 
of ~ and thus may be replaced by ~b/~t and brought outside the integral over 6A~. Of 
course the velocity of the 6A~# interface within an averaging volume will be typically 
dependent upon position and therefore w. n should not be removed from the integral over 
6A~#. 

APPLICATION 

We will now apply averaging theorems [16] and [21] or [18] and [22] to the general 
balance equation for some property 

~(p¢) 
c~----~ + V .  ( p v ~ )  - V .  i - pf  = pG [23] 

where i is the diffusive flux, f i s  an external supply term, and G is the production rate. We 
will also make use of mass averaged quantities defined as 

~ =  :6r p(x +¢,t)~b(x +¢,t)?~(x +¢,t)dv¢ // (p~)(x, t). [241 

The deviation term defined relative to this quantity is 

i f (x ,  ¢, t)  = ~k(x + /~ ,  t)  -- ~b~(x, t). [25] 

Application of [16] and [21]-[23] yields 

where 

Ot 

+-~l f~&,p~b(v_w).nda_~f~A,,(i_P).nda 

1 f~ 1 [- D6V D~6V ( i - P ) . V 6 V ] d a  

P = (i~)~ - (p~)~-~ ~ , 

[26] 

[27a] 

D 
D--t = 8t + v. V, [27b] 
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and 
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D ~ 0 
D t  = ot + e . V x .  

Use has been made here of the identities 

[27c] 

and 

(p~@~) = ( p ~ ) ~ ,  [28a] 

v~: = ~=q7 ~ + ~ff=. [28b1 

Alternatively, one can use averaging theorems [18] and [22] directly or rearrange [26] 
to obtain 

+ V x .  - V x .  i - < p : > 7  • 

1 p~k(v -w) .nda-~  A,~ 

f~ 1 ~ 1 [- Dt~V 
1 (i - P)  " n d a  - ~ - ~  J ~ f v L P ~ '  Dt 

, ,~_~D~fV -] ~ --(p~)~k ~-~ ( i -P) .VfVjda=(p=)G. [29] 

tgt 

CONCLUSION 

Equations [26] and [29] are generalizations of the balance equations found in 
Hassanizadeh & Gray (1979a) to allow for non-constant averaging volumes. In the special 
case of ~ V constant, these equations become identical to those previously found in the 
literature as explicit dependence of the equations on the averaging volume size drops out. 
When 6 V is not constant, [26] and [29] also lose their explicit dependence on 6 V if 

3~VI~---~f~P~'da-~---~f~vP~'dv]=O3t [30a] 

and 

I~f~ oval f6v, (p~kv-i) dv] = O. VfV" 1 (p~bv - i) da - -¢-;7,. 
A, 

[30b] 

Thus if the conditions stipulated in [30] are satisfied, the traditional averaged equations 
derived for a constant averaging volume will be appropriate even when the system requires 
a non-constant volume in order to obtain meaningful averages. 
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